
UJFRE COPY
WNavy Peonnel Reserch and Development Center

* Shgs O CA e u14U Teoe December 166

.

N
N Steamer II:

Steamer Prototype Component Inventory
and User Interface Commands

Approved for public release; distribution is unlimited.

OTIC! I ~ELECTEII

S D
H

89 '"-1 09-,172
I IIII I I

NPRDC TR 89-2 December 1988

A

Steamer If:
Steamer Prototype Component Inventory and

User Interface Commands

Janet L. Dickieson
Walter F. Thode

Navy Personnel Research and Development Center

Kent Newbury
Systems Engineering Associates

San Diego, California 92109

Reviewed and approved by
J. C. McLachlan

Director, Training Systems Department

Released by
B. E. Bacon

Captain, U.S. Navy
Commanding Officer

and
J. S. McMichael

Technical Director

Approved for public release;
distribution is unlimited.

Navy Personnel Research and Development Center
San Diego, California 92152-6800

IMDI SrIU.SECuRity CLA551,F€,CA tON 09 T;-1S-P-AGZE

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution is
2o DECLASSIF)CATION I DOWNGRADING SCHEDULE unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

NPRDC TR 89-2
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Navy Personnel Research and (If appoicabie)
Development Center Code 14

6c ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, end ZIP Code)

San Diego, California 92152-6800

Ba NAME OF FUNDING i SPONSORING go OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Chief of Naval Operations OP-0 I
8, ADDRESS(C'ty, Stare. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UN!7
ELEMENT NO NO NO ACCESSION NO

Washington, DC 20350-2000 0603720N Z1772 I'X-35042
I TITLE (Include Securnty Ctass ficaton)

Steamer 11: Steamer Prototype Component Inventory and User Interface Commands
I b PER ONA. AuTHOR S)
bickeson, J. L, hoe, W. F. (NPRDC), and Newbury, K. (Systems Engineering Associates)

13a TYPEOF REPORT I13b TIME COVRED 14 DATEOF REPORT (Year, Month, Day) JS PAGE COUNT
Technical ReportI FROM FY88 to FY89 19! December 57

'6 SUPPLEMENTARY NOTATiO%

17 COSA. CODES 18 SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

FIE.D GROUP SUB-GROUP Simulation, steam plant propulsion, artificial intelligence,
05 0 Steamer

19 ABSTRACT (Continue on reverse ' nece ary and identify by block number)

Over the last several years, Navy Personnel Research and Development Center produced a Steamer
prototype simulation of a 1200-psi steam plant. This simulation is installed on an expensive Symbolics
minicomputer at the Surface Warfare Officers School Pacific (SWOSCOLPAC), Coronado, CA. Docu-
mentation of the Steamer prototype components and the user interface was needed.

Careful examination of the actual program code provided an inventory that describes the hardware,
system software, and application software and list the documentation for the prototype Steamer system.
Similarly, systematic exercising of all menu options produced an inventory of the user interface
commands.

20 D1STRiBuTfON /AVAIABILiTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

MUNCLASSIFIEDIUNLIMITED 03 SAME AS RPT 0 TEIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE nciude Ame Code) 22c. OFFICE SYMBOL
Janet L. Dickieson (619) 553-7712 Code 14

DO FORM 1473.84 MAR 83 APR edition may be used untI exhausted SECURITY CLASSIFICATION Of THIS PAGE
All other editions are obsolete UNCLASSIFIED

° III I I . S

FOREWORD

This research was funded as part of the Advanced Development project entitled
Advanced Computer-aided Instruction (Program Element Number 0630720N, Work Unit
Number Z1772-WX-35042). It was sponsored by the Chief of Naval Operations (OP-0l).
Systems Engineering Associates performed part of this work under contract N00123-85-D-
0151.

The fundamental research goal of the Steamer prototype system was to evaluate the
potential of new artificial intelligence (Al) hardware and software technology for
supporting the construction of computer-based training systems using graphic representa-
tions of complex, dynamic systems. The initial focus is on the propulsion engineering
domain. Technologies successfully applied to this domain are expected to be transferable
to others.

The Steamer project began in 1979 as an independent research effort that later
transitioned to an exploratory development program. The current advanced development
effort began about FY 1985.

Previous reports on the Steamer project described an initial framework for develop-
ing techniques for automatically generating explanations of how to operate complex
physical devices (Stevens & Steinberg, 1981); a user's manual for the Steamer interactive
graphics package (Stead, 1981); a method for generating explanations using qualitative
simulation (Forbus & Stevens, 1981); CONLAN, a constraint-based programming language
for describing the operation of complex devices (Forbus, 1981); a mathematical simulation
of the Steamer propulsion plant (Roberts & Forbus, 1981); the then-current Steamer
prototype and basic support software (Stevens, Roberts, Stead, Forbus, Steinberg, &
Smith, 1982); a computer-based training system for monitoring a boiler light-off
procedure (Hutchins, Roe, & Hollan, 1982); and an onsite evaluation of the Steamer
prototype at the Navy Surface Warfare Officers School (SWOS) in Newport (Stevens &
Hutchins, 1983).

This report describes the Steamer prototype system components and user interface
commands. It establishes a starting point for Steamer II, the name applied to recent work
on Steamer. It is intended for use by Navy training managers and computer-based training
system designers.

B. E. BACON J. S. McMICHAEL
Captain, U.S. Navy Technical Director
Commanding Officer

, Accession For

SNTITS GFA&I
T . TA_ fl

A ~ codes

-A and/or

r; t tcvi

iL

SUMMARY

Problem

A Over the last several years, Navy Personnel Research and Development has produced
a prototype simulation of a 1200-psi steam plant. This simulation, called Steamer, is
installed on an expensive Symbolics minicomputer at the Surface Warfare Officers School,
PacificS--SC-O--PAC-, Coronado, California.-- In early 1987, the need to document the
Steamer prototype components and the user inetface was recognized.

Objective

The fundamental research goal of the Steamer prototype system was to evaluate the
potential of, what was then, new artificial intelligence (AI) hardware and software
technology for supporting the construction of computer-based training systems using
graphic representations of complex, dynamic systems. The area of propulsion engineering
was chosen for a number of reasons.

This e describes the Steamer prototype system components and user
interface commands and establishes a starting point for designing, developing, and
implementing Steamer TI.

Approach

All available documentation about Steamer system was reviewed. The program files
on the Symbolics machine were examined to determine how the Steamer prototype
software was arranged and operated. All of the menu options presented by the Steamer
prototype system were systematically exercised.

Findings

Careful examination of the actual program code produced an inventory that describes
the hardware, system software, application software, and documentation for the Steamer
prototype system. Exercising all menu options systematically produced an inventory of all
Steamer prototype user interface commands.

Future Plans

The next step is to create Steamer I by adapting relevant portions of Steamer
prototype technology to a microcomputer environment.

vii

CONTENTS

Page

INTRODUCTION ... I

Problem ... I
Objective ... I

APPROACH 2-..2

DESCRIPTION ... 2

FINDINGS ... 8

DISCUSSION AND FUTURE PLANS ... 8

REFERENCES ... I I

APPENDIX A--STEAMER PROTOTYPE INVENTORY A-0

APPENDIX B--STEAMER PROTOTYPE USER INTERFACE COMMANDS B-0

APPENDIX C--STEAMER PROTOTYPE GLOSSARY C-0

DISTRIBUTION LIST

LIST OF FIGURES

1. Graphics editor interface .. 3

2. Steamer control view ... 4

3. Make-up and excess feed view .. 5

4. Steamer prototype system tools .. 7

ix

.. m d~r lliilill ll I~illllilll ll =l1

INTRODUCTION

Problem

Over the last several years, Navy Personnel Research and Development Center has
produced a prototype simulation of a 1200-psi steam plant. This simulation, called
Steamer, is installed on an expensive Symbolics minicomputer' at the Surface Warfare
Officers School, Pacific (SWOSCOLPAC), Coronado, California. In early 1987, the need
to document the Steamer prototype components and the user interface became apparent.

Objective

The fundamental research goal of the Steamer prototype system was to evaluate the
potential of, what was then, new artificial intelligence (A) hardware and software
technology for supporting the construction of computer-based training systems using
graphic representations of complex, dynamic systems.

The area of propulsion engineering was chosen for the following reasons:

1. The continuing need to improve Navy training in propulsion engineering has the
potential for adequate research funding.

2. Alternative forms of training using simulators or ships are expensive. When the
effort began, a high-fidelity simulator, such as the 19E27 steam plant simulator at the
SWOSCOLCOM, Newport, would have cost $7 million. Pierside steaming costs approxi-
mately $6200 per day for a frigate with a 1200-psi steam plant.

3. Access to a detailed mathematical simulation model of a basic dynamic 1200-psi
steam plant system enabled efforts to concentrate on the interface, tutorial, and
explanation issues.

4. The use of graphical interfaces to support the development of useful mental
models of complex dynamic physical systems and devices was of timely interest.

5. Engineering domains seemed to provide the most instructional leverage from the
use of Al techniques. Since engineering is concerned with designed systems and physical
mechanisms, it appeared to be promising for exploring the nature of mental models.

This technical note describes the Steamer prototype system components and user
interface commands and establishes a starting point for designing, developing, and
implementing Steamer 11.

lidentification of specific equipment is for documentation only and does not imply
any endorsement.

APPROACH

All available documentation about Steamer system was reviewed. The program files
on the Symbolics machine were examined to determine how the Steamer prototype
software was arranged and operated. All of the menu options presented by the Steamer
prototype system were systematically exercised.

DESCRIPTION

Navy steam propulsion systems are exceedingly complex physical systems. The
propulsion spaces account for about one third of the space in most N-vy ships and miles of
pipes interconnect thousands of components. The operation of the plant is supervised by
an engineering officer of the watch and controlled by a team of 16 to 25 individuals who
operate in the most trying of circumstances. They often work long hours in a hot, dirty,
and quite dangerous environment. Frequently, individuals must cover more than one
watch station in a seemingly unending sequence of watches (6 hours on and 6 hours off).
Operators monitor the status of the plant primarily by observing gauges depicting
important operational parameters and using other indicators of plant status, particularly
how the plant "sounds" and "feels." It takes years of instruction and experience to be able
to understand and operate a propulsion plant competently. In addition, rich, robust mental
models of the steam plant are needed to be able to respond to the myriad casualty
conditions that arise.

The prototype Steamer system consists of a graphical interface to a mathematical
simulation model of a steam propulsion plant. The interface enables users to select a
specific view from a library of propulsion plant views (Figure 1) and to interact with this
view to change the values of the variables in the underlying simulation model. A view is a
window into the steam plant. As the model simulates an operating steam propulsion plant,
the evolution of plant states, or status, can be observed by graphical changes in the view
on a color display.

Views depict aspects of the propulsion system at various levels of detail. They vary
from collections of gauges and indicators typically found in a real plant to schematic
diagrams that depict conceptualizations similar to those that experts seem to use when
thinking about the operation of the propulsion plant. Steamer's increased teaching
effectiveness comes from its ability to show: (1) global views of physically dispersed
systems in the actual plant that are difficult to see as a total system; (2) simplified
versions of systems that are easier to understand or provide better models for reasoning
about the plant operation; (3) flow and other internal characteristics of systems or
components; and (4) aspects of the system operation that are not normally visible but aid
in developing an understanding of that system.

Figures 2 and 3 are black and white renditions of views that users would see on a
color screen. State, or status, information is depicted by color, by animation, and by
analog, digital, and textual changes. For example, color indicates the operational status
of a pump or valve (red for off, green for on), animation shows the flow in pipes, and
needles in dials and lines on graphs reflect plant parameters.

Each representation of a component of the plant (e.g., valve, pump, gauge) is called
an icon. The iconic representation serves to provide both state information about the
components and a mechanism for changing the values of variables in the underlying
simulation. Users can change the state of a component with a mouse-controlled cursor by

2

1~~I
U.

~'~' ..

_

3 ~. U~~flq~

6

~a II.
UJ

U -~ U- C

C
~ - U

iJ~ ~

S ,I'~!
SIS -~ -

~- ~ -

* b 44

~
- o

E 44

______ ______________ a
C

-4 -~

* LI -~

4,1*
w 0. =41

0.
0

4, 4-

0

o 4-r

*
S
U
0
4.~

0

0

Cs a4,
0

U,

I..*
S.
Wa -

Z4~
4,
r

IE AJ~

3

* Steamer Control View

S/H OUTLET DRUJM PRE3S1 W4 C0OND VACUM1

1:5:23
Time

FroZenD

MN LO PRESS __HP 1ST STAGE
Maicps L

15 KTS 125 RPM 1 Boiler

Figure 2. Steamer control view.

4

MAKE-UP & EXCESS FE
FROM ENGitZ ROOMl FROM AUX COtNIDENERS

PORT ENIEPG
FEED TANK LiGP-

ITO FO PDA Y

Nttj Cor IB FAD PUMPDF

U 1JA F
VAUMDRGC

12

I FROM FRESH
WATER MhAN TO BOOSTER PUMPS

STBD EMERG SYSTEM
FEED TAW V

Figure 3. Make-up and excess feed view.

5

clicking the mouse. For example, clicking the mouse when the cursor is on a pump will
change its state (i.e., on, off). Similarly, one can vary the level of a tank, change the
value of a dial, or position a throttle. Of course, the nature of the underlying simulation
and the goals of the interface designer determine which variables and thus which
components can be manipulated. The important point here is that the interface functions
as a two-way communication device: depicting and allowing changes of state.

The goal of Steamer prototype system was to build not only a training system specific
to the 1200-psi steam plant but also a set of software tools for implementing simulation-
based training systems and graphical interfaces for other domains. The following set of
tools (Figure 4) evolved as a result of creating the graphical interface. The general
simulation environment, called Simenv, which consists of a model controller and a
graphics editor, is the core of the Steamer prototype system. It permits one to build
interactive graphical interfaces to simulation models or real-time systems. The graphics
editor makes available a set of icons, facilities for modifying characteristics of icons
(e.g., size, shape, color, and placement), and the ability to associate icons with model
variables so that the icons reflect the values of the variables and so that one can interact
with the icons to change the values of their associated variables. The model controller
enables one to run simulation models, introduce predetermined casualties into the chosen
model, observe the model's state via graphical views constructed with the graphics editor,
and interact with the views to change the state of a simulation modei.

Figure 4 includes several tools whose development was not completed. Chief among
them is the icon editor, which would enable users to construct new icons without requiring
them to operate at the level of code writing. In addition, a series of knowledge-based
editors for the specification of domain knowledge was under development. The behavior
editor was supposed to explore the incorporation of simulation knowledge into icons. The
lesson editor was intended to explore the incorporation of domain knowledge into
graphical views so that they could explain themselves, pose problems to students, and
monitor their answers. Designer, an interactive visual design consultant for users of the
graphics editor, was supposed to make available graphical design knowledge during the
process of constructing and critiquing graphical views.

The mathematical simulation model of the steam plant was adapted from the model
developed for use with the 19E22 steam plant simulator at SWOSCOLCOM. The program,
originally coded in FORTRAN, was rewritten in ZetaLisp, the version of LISP that runs on
the LISP machines built by Symbolics, Inc.

From the beginning, the target computer hardware for the Steamer effort was a low-
cost portable environment (Stevens & Steinberg, 1981). Development work on the
Steamer prototype system, however, took place on larger machines. The development
environment provided by the larger machines contributed significantly to the iterative
design and development of the Steamer prototype system.

The Steamer prototype system resides on a single-station minicomputer made by
Symbolics. Each computer costs approximately $85,000 to buy and approximately S15,000
per year to maintain. Both costs are likely to increase in future years. The central
processing unit (CPU) is the size of a two-drawer filing cabinet and exceedingly noisy
when operating.

6

OpratingTol

Fr4.Steamer prttp ytM tls.ca

ProttypeMod7

SWOSCOLPAC uses one of these computers for the Steamer prototype system. The
CPU is in a remote computer room. The two terminals used, the monochrome console and
the color display, are in another room. They are not in the classroom used for 1200-psi
steam plant training because it is too far from the CPU. The fact that only one student
can use the system at a time also limits use of the Steamer prototype system.

The SWOSCOLPAC personnel have indicated that the basic features of the Steamer
prototype system are desirable but that its present state limits its use. They use the
Steamer prototype system only when a student has trouble understanding a particular
aspect of the steam plant operation or wants to use it after normal class hours. The
prototype has not been incorporated into the course curriculum.

Ideally, with a Steamer system on each student's desk, instructors could guide the
class through planned casualty situations while the students observe the results of these
casualties on the plant. Instructors could also prepare and store structured lessons for use
by students in every class. Students having trouble in specific areas could be directed to
relevant additional stored lessons.

FINDINGS

Much of the available documentation about the Steamer prototype system concentra-
ted on the theoretical problems of teaching the operation of large-scale physical devices
using computer-based instruction techniques. Teaching thus provided would substitute for
practicing on the physical devices themselves.

The Steamer prototype inventory (Appendix A) describes the hardware, system
software, and application software and lists all documentation for the Steamer prototype
system. It does not discuss the capabilities, effectiveness, or usefulness of the
components.

Systematic exercising of all menu options produced the inventory of Steamer
prototype commands (Appendix B). This inventory describes the Steamer prototype
system user interface commands.

The Steamer prototype glossary in Appendix C defines the terminology specific to
Steamer.

DISCUSSION AND FUTURE PLANS

The Steamer prototype system determined the feasibility of using interactive high-
resolution color graphics to depict the dynamics of an extremely complicated system. In
conjunction with Steamer's mathematical simulation model, which represents a verified
data base of domain information, the resulting simulation has proved very effective in
training. Even without supporting quantifiable data, there is enough support for the
concepts behind the prototype Steamer to justify the development of fleet training based
on the Steamer prototype system (Stevens & Hutchins, 1983).

.. i i -i i 'i l i l ~ i l N |

Current efforts and plans include an in situ assessment of Steamer 11, an assessment
of the Steamer TI system in a variety of potential operational applications, and collecting
descriptive data on the use of the system, performance data from students, and data on
instructor, student, and staff experiences and opinions about Steamer 11.

Preliminary investigations have shown that incorporating video images into Steamer
II may be useful. Therefore, the feasibility and cost effectiveness of integrating the
videodisc capability with the graphics editor will be investigated. This capability will
enable video images of propulsion plant components and operational procedures to be
displayed. These images will be merged with graphical representations.

A lesson editor will be developed to allow instructors to create automated tutorials.
These tutorials will include diagrams that can explain what they depict, problems that
students will answer by interacting with the diagrams, and the ability to monitor student
interactions.

Moving Steamer to a more compact, reliable, and relatively inexpensive computer
system is underway. Computer hardware has advanced to the point where a system such
as Steamer can potentially run on a relatively inexpensive and compact microcomputer.
Currently available computers under investigation include those that are based on Intel
80386 or Motorola 68020 processors. The future promises even more speed in less physical
space. We intend to develop an easily portable system that can be distributed to all sites
where steam plant operation is part of the curriculum. In addition, SWOSCOLPAC
personnel have indicated that a similar on-board training capability would be extremely
valuab'e. A compact system on each ship with a 1200-psi steam plant would be a logical
outcome.

Specification of Steamer II delivery systems is being done with an eye toward the
next generation of improvements and additions that will result in a powerful and broadly
useful training/simulation system. Other mathematical simulation models around which a
similar graphically-based simulation can be built using the same set of tools available in
Steamer II are being researched. Different domain data bases are being examined, such as
a manpower management training simulator called *IMAGE*, which used the graphics
editor in its development at Navy Personnel Research and Development Center. Expert
system shells will be investigated as potential substitutes for a mathematical simulation
model and as the basis for training/simulation using the same tools. Intelligent tutors and
adaptive instructor/student models will be researched. A generalizable "simulation
editor" is a possibility.

9

REFERENCES

Forbus, K. D. (1981, August). Project STEAMER: IV. A primer on CONLAN--A
constraint-based language for describing the operation of complex physical devices
(NPRDC TN 81-26). San Diego: Navy Personnel Research and Development Center.

Forbus, K. D., & Stevens, A. (1981, August). Project STEAMER: I1. Using qualitative
simulation to generate explanations of how to operate complex physical devices
(NPRDC TN 81-25). San Diego: Navy Personnel Research and Development Center.

Hutchins, E., Roe, T., & Hollan, 3. (1982, August). Project STEAMER: VII. A computer-
based system for monitoring the boiler light-off procedure for a 1078-class frigate
(NPRDC TN 82-25). San Diego: Navy Personnel Research and Development Center.

Roberts, B., & Forbus, K. (1981, August). Project STEAMER: V: Mathematical
simulation of STEAMER propulsion plant (NPRDC TN 81-27). San Diego: Navy
Personnel Research and Development Center.

Stead, L. (1981, August). Project STEAMER: II. User's manual for the STEAMER
interactive graphics package (NPRDC TN 81-22). San Diego: Navy Personnel Research
and Development Center.

Stevens, A., & Hutchins, E. (1983, September). Project STEAMER: VIII. System
evaluation by Navy propulsion engineering training personnel (NPRDC SR 83-52). San
Diego: Navy Personnel Research and Development Center. (AD-A134 051)

Stevens, A., Roberts, B., Stead, L., Forbus, K., Steinberg, C., & Smith, B. (1982, 3anuary).
Project STEAMER: VT. Advanced computer-aided instruction in propulsion engineer-
ing--an interim report (NPRDC TR 82-28). San Diego: Navy Personnel Research and
Development Center. (AD-AII0 797)

Stevens, A., & Steinberg, C. (1981, August). Project STEAMER: I. Taxonomy for
generating explanations of how to operate complex physical devices (NPPP'C TN 81-21l
San Diego: Navy Personnel Research and Development Center.

11

APPENDIX A

STEAMER PROTOTYPE INVENTORY

A-0

The simulation environment (often referred to as Simenv) is the core of the Steamer
prototype system. It provides the tools for producing a simulation. The graphics editor
creates views of the system and the model control facility is used for interacting with a
simulation.

The Steamer prototype simulation was produced using the Symbolics editor (for
creating ZetaLisp code) and the simulation environment (for building the simulation). Any
simulation that is produced using the simulation environment is composed of two parts:
(1) the mathematical simulation model, a mathematical representation of some physical
system, which in the case of Steamer, is the physical steam plant and (2) the library of
views. Each view is a diagram of a portion of the physical plant and is composed of a set
of graphic icons. Views are created using the graphics editor.

Code was found for the lesson editor, icon editor, and designer. None of these
processes is operational in the Steamer prototype system.

The remainder of Appendix A lists the inventoried components of the Steamer
prototype system. The components are grouped into the categories of hardware, system
software, application software, and documentation.

HARDWARE

The minimal hardware on which the Steamer prototype system runs follows:

1. Symbolics 3640 Computer containing:

* 2560K words of memory (36 bit words)
* 2 hard disks, each with 110 Megawords of storage
* Streaming tape drive

2. Symbolics monochrome monitor with keyboard (150 x 900 resolution).

3. Symbolics color monitor with 256 colors (1280 x 1024 resolution).

4. Logitech mouse.

The Steamer prototype system software has also been run on other Symbolics 3600-
series computers (3600, 3670, 3675).

A-I

SYSTEM SOFTWARE

Because the Symbolics machine is a LISP machine, the operating system, program-
ming language, and hardware are all very closely integrated. There is not a distinct
boundary between the operating system and the LISP interpreter/compiler.

The complete set of system software used for implementing Steamer prototype is as
follows:

1. Genera 7.1 Operating System.

2. Symbolics Color System--version 331.5. This includes Symbolics Color Sup-
port--version 11.4.

3. ZetaLisp Programming Language. ZetaLisp can be either interpreted or
compiled.

4. Flavors extension for ZetaLisp for providing object-oriented programming.

APPLICATION SOFTWARE

The file system subdirectories that exist on the Symbolics machine and the LISP files
they contain are documented below. In addition, another set of files is used to load and
configure each of the processes on the Symbolics. These files are scattered throughout
the file directories, but for the purposes of this document they will be grouped together.

Each of the Steamer prototype processes is composed of one or more packages that is
loaded onto the Symbolics machine. Each package is identified by a title that is stored in
the configuration files. The titles for each of the three primary subsystems are listed
below:

1. Simulation Environment

2. Steam Plant Simulation

Steamer System
Steamer System Views
Steamer System Model

3. Lesson Editor

Experimental Lesson Editor
Steamer System Lessons
Steamer Model

A-2

APPLICATION SOFTWARE

Configuration Files

Listed below are the configuration files used to load each of the processes. These
files provide information to the operating system about the content of the processes and
the configurations needed for the processes to run.

Configuration files for the simulation environment:

1. defsimenv.lisp
2. simenv.system
3. simenv.translations
4. simenv-documentation.system

Configuration files for the steam plant simulation:

I. defsteamer-system.lisp
2. steamer-system .system
3. steamer-system .translations
4. steamer-model.system
5. steamer-model.translations

Configuration files for the lesson editor:

1. deflesson.lisp
2. lesson.system
3. lesson.translations

Configuration files for the icon editor:

1. defie.lisp

Configuration files for designer:

1. defdesigner.lisp
2. def designer-knowledge.lisp
3. def designer-system.lisp

A-3

APPLICATION SOFTWARE

Simulation Environment

This Symbolics directory contains the code for the simulation environment.

model subdlrectory

This subdirectory contains the high level simulation control routines. These routines
interpret the operator interactions and call lower level routines for performing the
actions. Simulation control is often referred to as model control, hence the name model
for this subdirectory.

I. model-activity
2. model-defs
3. model-functions
4. model-panes

system subdirectory

Listed below are the low level simulation control routines that perform the majority
of the simulator functions.

1. activities 14. segment-support
2. activity-control 15. sim-initializations
3. basic-lesson 16. simenv-activity
4. basic-model 17. simenv-commands
5. basic-view 18. simenv-defs
6. file-control 19. simenv-frame
7. graphic-pane-activity 20. simenv-panes
8. lc-mixin 21. simenv-control
9. mc-mixin 22. status-defs
10. package 23. status-macros
11. pane-defs 24. system
12. save-mixin 25. title-activity
13. segment-defs 26. vc-mixin
14. segment-support 27. version-control
15. sim-initializations 28. view-set

editor subdirectory

Listed below are the graphics editor routines that are used to create and modify
views of a simulation.

I. editor-activity
2. editor-defs
3. editor-edit
4. editor-grid
5. editor-hardcopy
6. editor-mark
7. editor-mouse-icons
8. editor-panes
9. editor

A-4

i - I

APPLICATION SOFTWARE Simulation Environment

icons subdirectory

Each simulation view is composed of a group of graphical primitives called icons.
The graphics editor provides a standard set of icons that includes such things as pipes,
valves, pumps, tanks, electrical symbols, and graphs. The icons subdirectory contains the
code for these standard icons.

I. 3-way-valve 15. graph
2. 4-way-valve 16. line
3. arc 17. multi-plot-graph
4. bar 18. old-valve
5. beam-tot 19. pipe
6. column 20. polygon
7. data-set 2!. pump
8. devices 22. region
9. dial 23. signal

10. digital-bar 24. spline
11. electric 25. switch
12. flame 26. text
13. force-bar 27. valve
14. geometric 28. view-icon

icon-support subdirectory

This subdirectory contains general icon-building subroutines and flavors. These
subroutines are used by the standard icons stored in the icon subdirectory. They can also
be used by ZetaLisp programmers to build other icons.

1. action 15. icon-defs
2. aspect-ratio 16. icon-m
3. basic 17. map
4. continuous 18. no-tap-mapping
5. def maps 19. picture-mixin
6. discrete-color 20. point
7. discrete 21. points
8. display 22. position
9. draw-self 23. rectangular

10. element-position 24. rotation
11. element 25. setup
12. fill 26. show
13. gage 27. tap
14. icon-animation

A-5

APPLICATION SOFTWARE Simulation Environment

graphics subdirectory

Listed below are the low level graphics routines for drawing and positioning objects
on the screen.

1. 7-0-color-patch 12. gl-m
2. aed-m 13. gl-text
3. aed 14. gl
4. b&w 15. graphics-defs
5. beep 16. pipe-blinker
6. device-animation 17. pipe-object
7. gi 18. pipe92
8. gl-devices 19. postscript-view
9. gl-initialize-aed 20. postscript

10. gl-initialize-b&w 21. sc-m
11. gl-initialize-sc 22. sc

utilities subdirectory

The utility routines below provide tools for performing functions such as building
menus, manipulating strings, and performing calculations.

I. font-defs
2. format-mouse-patch
3. format-mouse
4. hcm
5. list
6. menu-choose-utilities
7. numeric
8. overlap
9. sct-modules

10. string
11. turbo-menu

site subdirectory

The site directory contains routines for configuring the simulator to a specific
computer.

I. site-configuration-data
2. site-configuration

A-6

APPLICATION SOFTWARE Simulation Environment

videodisc subdirectory

This subdirectory contains programs for interfacing to a videodisc player. Since no
videodisc was connected to the system, it is not known how well this interface works, if at
all.

1. discovision
2. vd-initialize-discovision
3. videodisk

documentation subdirectory

The documentation subdirectory contains a set of files that briefly explain the
operation of the simulation environment. These files are discussed in detail later.

Steam Plant Simulation

This Symbolics directory contains the code for the simulation of the 1200-psi steam
plant. The main steam plant simulation directory contains one file, steamer-system.lisp.
This file defines the global parameters for the steam plant simulation. It is entirely
machine generated using the simulation environment.

models subdirectory

These routines comprise the underlying mathematical simulation model for the 1200-
psi steam plant.

1. auxiliary 10. ic
2. casualties 1I. initializations
3. casualty-defs 12. patch
4. commands 13. run-defs
5. common 14. run
6. defsteamer-model 15. steamer-model
7. engineroom 16. steamer-package-defs
8. fireroom 17. wpump
9. fortran

A-7

APPLICATION SOFTWARE Steam Plant Simulation

models >augments subdirectory

These files augment the mathematical model. Augments calculate additional steam
plant values from the basic mathematical model. When views are built using the
simulation environment, these additional values can be displayed. For example, the rate
of flow in a pipe can be calculated as an augment based on the speed and capacity of the
pump that fills the pipe. The rate of flow can then be displayed in a view that contains
the pipe.

1. abc-water-level-control-model-augment
2. ae-sys-model-augment
3. as- 1200-sys-model-augment
4. as-I 50-sys-model-augment
5. as-superheater-protection-model-augment
6. augment-support
7. fo-burner-front- l b-model-augment
8. f o-control-valve- l b-model-augment
9. fo-sys-basic-model-augment

10. fo-sys-model-augment
1 I. gs-er-model-augment
12. gs-unloader-er-model-augment
13. lo-sys-model-augment
14. make-up-excess-feed-model-augment
15. mc-air-ejector-model-augment
16. mc-pump-submergence-model-augment
17. mc-sys-model-augment
18. m -control-model-augment
19. mf-sys-model-augment
20. ml-jet-pumps-model-augment
21. msw-circ-model-augment

A-8

APPLICATION SOFTWARE Steam Plant Simulation

views subdirectory

Listed below are the files containing the code for the views for the 1200-psi steam
plant. Each view corresponds to a single graphical picture of a portion of the steam plant.
The views are created using the graphics editor portion of the simulation environment.
Figures 2 and 3 (text) are are samples of views created by the graphics editor. Each of
these files is entirely machine generated.

1. 1200-psi-aux-steam
2. 150psi-auxiliary-steam
3. lb-burner-front
4. abc-lb-boiler
5. abc-big-picture
6. abc-schematic
7. ae-lamr
8. autosi gnal-f low- Ib
9. aux-exhaust-augmentor

10. auxiliary-exhaust
11. auxiliary-exhaust-fr
12. auxiliary-steam-lamr
13. basic-f o-system
14. hasic-lube-oil-system
15. control
16. electric-I
17. fo-control-valve-Ib
18. fuel-oil-service-pump- la
19. f uel-oil-system
20. gland-seal-er
21. gland-seal-unloader
22. jet-pump-lab
23. lube-oil-unloader
24. main-circ-system-er
25. main-condensate-er
26. main-engine-lube-oil
27. main-feed-control
28. main-feed-system
29. mc-air-ejector
30. mc-pump-submergence
31. mf p-lube-oil-cooler
32. mfp-recirc-sys-la
33. superheater-protection
34. throttleboard
35. water-level-control

A-9

APPLICATION SOFTWARE Steam Plant Simulation

views >sc subdirectory

These are additional views of the 1200-psi steam plant.

1. console-lb
2. make-up-and-excess-feed
3. steam-cycle

lessons subdirectory

This subdirectory contains lessons that were built using the lesson editor. Even
though these files are loaded as part of the lesson editor subsystem, they are stored as
part of the steam plant simulation subsystem.

I. boiler-control
2. muef-lesson-l

Lesson Editor

The lesson editor was intended to be used to build sequenced lessons that are based on
an existing simulation. Two lessons built for the 1200-psi steam plant simulation are
stored in the lessons subdirectory for the simulation. This directory contains the code for
the lesson editor and has no subdirectories. Only a portion of the lesson editor is
operational.

1. highlighter
2. lesson-activity
3. lesson-defs
4. lesson-edit
5. lesson-functions
6. lesson-init
7. lesson-mouse
8. lesson-pane-defs
9. lesson-panes
10. lesson-status-defs
1I. package
12. scroll-region

A-10

APPLICATION SOFTWARE

Icon Editor

activity subdirectory

1. discrete-color
2. fill
3. i.e-activity
4. i.e-commands
5. i.e-defs
6. i.e-init
7. i.e-pane-defs
8. i.e-panes
9. i.e-status

10. i.e-status-functions
11. package
12. position

activity>draw subdirectory

I. action-setup
2. draw-primitives
3. fixed-color-mapping
4. line
5. new-bar
6. oogs

activity'i.e-patch>i.e-7 subdirectory

I. frame
2. i.e-activity
3. i.e-init
4. i.e-pane-defs
5. i.e-panes
6. package
7. windows

new-icons subdirectory

1. composite-icon
2. dial
3. multi
4. new-bar
5. ornament

A-ll

APPLICATION SOFTWARE

Designer

activity subdirectory

1. basic-view-critique
2. designer-activity
3. designer-pane-defs

atms subdirectory

I. tns-inter face

class-defs subdirectory

1. basic-graphics
2. constraint-defs
3. graphic-type-defs
4. principle-defs
5. standard-defs
6. technique-defs

constraints subdirectory

I. constraints
2. principles
3. standard

critique subdirectory

I. critique
2. critique-comment
3. critiquee

graphics subdirectory

I. designer-sc

objects subdirectory

I. certainty
2. elements
3. icon-interface

A-12

APPLICATION SOFTWARE Designer

principles subdirectory

I. significant-difference

relations subdirectory

1. basic-layout
2. class
3. grouping
4. proximity
5. relations
6. repetition
7. similarity

standards subdirectory

I. pipe-size
2. titles

style subdirectory

I. style

synthesis subdirectory

I. synthesis

top level subdirectory

I. designer-globals
2. designer-m
3. package
4. utilities

designer-system subdirectory

1. designer-system

A-13

DOCUMENTATION

There is a large variety of documentation available for the prototype Steamer
system. Unfortunately, most of it is old or is very general in its description of the
system. The documentation includes operations manuals for the Symbolics machine,
reports outlining research work on the Steamer project, descriptions of the steam plant
mathematical model, text files describing the operation of the simulation environment,
and other miscellaneous documentation. This section of Appendix A lists all of the
documentation that is known at this time.

Simulation Environment

The documentation for the simulation environment consists of a set of text files that
are stored in the documentation subdirectory of the simulation environment and listed
below. The files provide a general description of the commands that are available when
using the simulation environment. Using the commands, an author can create a simulation
that contains the following elements: a single system, one or more subsystems, a model,
and a number of views.

I. overview.text--presents an overview of the simulation environment and describes
the format of the screen, the operation of the mouse, and the available commands.

2. creating-system.text--describes the commands for creating and modifying sys-
tems.

3. creating-sub-systems.text--describes the commands for creating and modifying
subsystems.

4. creating-models.text--describes the commands for creating and modifying
models.

5. creating-views.text--describes the commands for creating views of a model.

6. distributing-simenv-in-7-O.text--describes how to produce distribution tapes for
the simulation environment.

7. simenv-readme.text--describes the steps for loading the simulation environment
and the steam plant simulation from tape and how to get it running.

A-14

I-
.. L- ,/ m llmm .I ~ nmlWH~am

, •. w: " I I U E I " - E l - -.

DOCUMENTATION

Steamer

The Steamer reports describe some of the research that led to the development of
the Steamer prototype system. These descriptions do not necessarily reflect the current
software.

1. Stevens, A., & Steinberg, C. (1981, August). Project STEAMER: I. Taxonomy
for generating explanations of how to operate complex physical devices (NPRDC
TN 81-21). San Diego: Navy Personnel Research and Development Center.

2. Stead, L. (1981, August). Project STEAMER: II. User's manual for the
STEAMER interactive graphics package (NPRDC TN 81-22). San Diego: Navy
Personnel Research and Development Center.

3. Forbus, K. D., & Stevens, A. (1981, August). Project STEAMER: III. Using
qualitative simulation to generate explanations of how to operate complex
physical devices (NPRDC TN 81-25). San Diego: Navy Personnel Research and
Development Center.

4. Forbus, K. D. (1981, August). Project STEAMER: IV. A primer on CONLAN--A
constraint-based language for describing the operation of complex physical
devices (NPRDC TN 81-26). San Diego: Navy Personnel Research and
Development Center.

5. Roberts, B., & Forbus, K. (1981, August). Project STEAMER: V: Mathematical
simulation of STEAMER propulsion plant (NPRDC TN 81-27). San Diego: Navy
Personnel Research and Development Center.

6. Stevens, A., Roberts, B., Stead, L., Forbus, K., Steinberg, C., & Smith, B. (1982,
January). Project STEAMER: VI. Advanced computer-aided instruction in
propulsion engineering--an interim report (NPRDC TR 82-28). San Diego: Navy
Personnel Research and Development Center. (AD-A 110 797)

7. Hutchins, E., Roe, T., & Hollan, J. (1982, August). Project STEAMER: VII. A
computer-based system for monitoring the boiler light-off procedure for a 1078-
class frigate (NPRDC TN 82-25). San Diego: Navy Personnel Research and
Development Center.

8. Stevens, A., & Hutchins, E. (1983, September). Project STEAMER: VIII.
System evaluation by Navy propulsion engineering training personnel (NPRDC SR
83-52). San Diego: Navy Personnel Research and Development Center. (AD-
A1I4 051)

9. Hollan, J., Hutchins, E. L., & Weitzman, L. M. (1984). Steamer: An interactive
inspectable simulation-based training system. Al Magazine, 5(2), 11-28. This
article, which is probably the best general description of the Steamer system and
its capabilities, was written by some of Steamer's primary researchers.

A-IS

DOCUMENTATION
View Descriptions

These files describe the components for some of the 1200-psi steam plant views.
Descriptions are available for the following views:

1. 1200 PSI Auxiliary Steam
2. 150 PSI Auxiliary Steam
3. Auxiliary Exhaust Augmentor
4. Auxiliary Exhaust
5. Basic Fuel Oil System
6. Basic Lube Oil System
7. Console lb
8. Control
9. Fuel Oil Control Valve lb

10. Fuel Oil Service Pump
11. Gland Seal Engineroom
12. Gland Seal Unloader
13. Main Circulation System Engineroom
14. Main Condensate Engineroom
15. Main Engine Lube Oil
16. Main Feed Control
17. Make-up and Excess Feed
18. MC Air Ejector
19. Main Feed Pump Recirculation System la
20. Steam Cycle
21. Superheater Protection

Miscellaneous

The following documents were used for this effort, but are not readily available.

S1. Gould, Inc. produced a five-volume report entitled, Final Math Model Report for
the 1200 PSI Propulsion Plant Trainer--May 31, 1978. This report describes the
underlying mathematical model for the steam plant simulation. It was originally
produced as support documentation for the 19E22 steam plant simulator at
Surface Warfare Officers School Command, Newport.

2. A layman's Guide to Steamer is a basic operator's manual for running the
simulation environment and the steam plant simulation. It does not fully
describe all of the features, but does provide a good introduction for getting
around in the system.

A-16

APPENDIX B

STEAMER PROTOTYPE USER INTERFACE COMMANDS

B-0

This Appendix emphasizes the processes that are installed and operating. The
operating processes are Simenv (consisting of the model control facility and the graphics
editor) and the lesson editor, which is only partially operational. No attempt was made to
document the operation of other processes, since they are not operable.

To understand the operation of the Steamer prototype system, it is helpful to
understand its four major functions: (1) building a simulation, (2) displaying a simulation,
(3) building a lesson, and (4) displaying a lesson. Simenv provides the commands for
building and displaying simulations, while the lesson editor provides the commands for
building and displaying lessons.

The commands are listed in a sequence that reflect their grouping in the user
interface. Steamer has three user interface formats. They are model control, graphics
editor, and lesson editor. Each format is composed of a number of windows, and each
window contains a set of text icons. Each text icon corresponds to a Steamer prototype
command, and the text icons in a particular window usually perform related functions.
The operator selects a specific command by using the mouse to move the cursor over a
text icon. Once the cursor is positioned over an icon, the command is activated by
clicking one of the three mouse buttons. In many cases, each mouse button causes a
different command to be activated. In addition, a status line provides additional icons and
additional commands for the operator. The way the user interface is organized causes
many commands to be repeated two or three times throughout the system. The
organization of the user interface is as follows:

I. Model Control

* Model commands
0 View commands
* Simenv commands
* Status line commands

2. Graphics Editor

* View commands
0 Simenv commands
* Mark commands
0 Edit marked icon commands
0 Grid commands
• Icon selection
0 Status line commands

3. Lesson Editor

* Lesson commands
0 View commands
0 Simenv commands
* Segment commands
* Edit commands
* Status line commands
0 Lesson status commands

4. Operating system commands

See Appendix C for a glossary of Steamer terminology.

B-1

i-~ W- I - |

MODEL CONTROL

Model Control (Figure B-) is used to control a model, select views, and interact with
the views.

Model Commands

See Figure B-I, top left window.

Run--Starts execution of the model. Once started, the model will continue to
execute until stopped.

Stop--Stops execution of the model.

Reset--Resets the model to an initial state. This is done by calling a reset routine
that is defined as part of the model. There are four possible reset states for the Steamer
system:

0 Cold iron
* Auxiliary steaming
* Underway (15 knots, one boiler)
* Underway (25 knots, two boilers)

Rate--Sets the frequency of execution for the model. If the rate is set at five
seconds, the model is updated (executed) once every five seconds. The default rate is
one second.

Tick--Executes the model once. The model is run for one tick.

Status--Shows the current status of the model. This is done by calling a status
routine that is defined as part of the model.

Save--Acts according to which mouse button is pushed:

Save the Current Model--Saves the currently selected model on the disk.

Save all System Models--Saves all models for the current system on the disk.

Find--Finds and loads a model from a disk file.

Select--Selects a loaded model.

Misc--Performs miscellaneous model control functions. This command is imple-
mented by calling a model control routine that is defined as part of the model. The
following miscellaneous functions are defined for the Steamer prototype system:

Set Casualties--Allows the user to activate predefined states within the model. For
the Steamer prototype system, these casualties are as follows:

* Fireroom--25 fireroom casualty states
* Engineroom--23 engineroom casualty states
* Auxiliary I and 11--25 auxiliary casualty states
* Electrical Central--25 electrical casualty states
* All--Composed of all of the above

B-2

.0

-I

c

00

4

- - 4
EU

.~CL

0.

* l 0

ME

IL

r.- 3

MODEL CONTROL Model Commands

Reset Casualties--Allows the user to reset casualties that were previously set.

Show Malops--Shows current malfunctioning operations within the model.

View Commands

See Figure B-I. top middle window.

Select--Acts according to which mouse button is pushed:

0 Select a view--Selects a defined view and displays it either on the color monitor
or in the left display box on the monochrome monitor. This view is called the
normal view.

* Select a control view--Selects a defined view and displays it in the right display
box on the monochrome monitor.

Interact--Interacts with the current view. The cursor is moved to the current view
on the color monitor (or the left portion of the monochrome monitor), and the operator
cticks the mouse while the cursor is positioned over a graphic icon. If the icon has an
output tap (set tap) into the model, the state variable associated with the icon is changed.

Probe--Updates the icon in the currently displayed views with the values from the
associated state variables in the model.

Initialize--Acts according to which mouse button is pushed:

* Initialize Icon Graphics System
* Initialize System Model Process

Configure--Displays a menu of configurations:

* Normal--Causes normal views to be displayed on the color monitor.

* B&W--Causes normal views to be displayed in the left display box on the
monochrome monitor.

Lesson--Activates a defined lesson. For the Steamer prototype system, two lessons
are defined:

* Boiler Control
* Muef Lesson I

Simenv Commands

See Figure B-I, top right window.

Activity--Allows selection of different processes:

* Graphics Editor
* Lesson Editor

B-4

MODEL CONTROL

Status Line Commands

These commands are chosen by positioning the cursor over one of the selections on
the status line and clicking one of the mouse buttons. The status line selection consis. of
category headings (system, model, subsystem, and views) and the currently selected item
for each category (for example, Steamer system is the selected system). The current
state of the model (running/stopped) is also shown on the status line.

system commands

See Figure B-I, lower left: System: Steamer system.

Select a System--Selects a loaded system.

Create a New System--Creates a new system. When a new system is created, the
user must specify the following information:

* System name
* System physical path

Find a System--Finds and loads a system from disk.

system item commands

Change System Attributes--Allows changes to defined attributes for the selected
system. The following attributes can be changed:

* System name
* Whether files should be compiled after saves
* System version
* Model version
* View version
* Lesson version
* System package files
* System physical path
* Model physical path
* View physical path
* Lesson physical path

Save System--Saves the current definition of the selected system.

Kill System--Removes a system. This is the opposite of loading a system.

Probe System--Causes the displayed views to be updated with values from the
associated state variables in the model.

B-5

1'

MODEL CONTROL Status Line Commands

model commands

Select a Model--Selects an existing model.

Create a New Model--Creates a new model. When a new model is created, the user
must specify the following information:

" Model name
" Model routine that performs the run command
* Model routine that performs the reset command
* Model routine that performs the reset state menu command
0 Model routine that performs the status command
* Model routine that performs miscellaneous commands
* A list of auxiliary files
* The system name for making the system
* Model physical path

Find Model--Finds and loads a model from the disk.

Save All Modified Models--Saves all models that have been updated.

Save All Models--Saves all models.

Display Model States--Displays the current state of all known models, indicating
whether the model is loaded and whether it has been modified since being loaded.

model item commands

Change Model Attributes--Changes the attributes for the current model. The
following attributes can be changed:

* Model name
* Model routine that performs the run command
* Model routine that performs the reset command
* Model routine that performs the reset state menu command
* Model routine that performs the status command
* Model routine that performs miscellaneous commands
* A list of auxiliary files
* The system name for making the system
• Model physical path

Save Model--Saves the current model.

Kill Model--Removes the current model. This is the opposite of adding a model.

Reset Model--Resets the model to an initial state.

Model Status--Displays the status of the current model.

Model Misc Functions--Allows selection of miscellaneous model control functions.

Model Item State Commands--The current state of the model is displayed as
"stopped" or "running."

B-6

MODEL CONTROL Status Line Commands

subsystem commands

Select a subsystem--Selects an existing subsystem.

Create a New Subsystem--Creates a new subsystem. When a new subsystem is
created, the user must specify subsystem name.

subsystem item commands

Change Subsystem Attributes--Changes the attributes for the current subsystem.

Edit Subsystem Views--Allows the user to specify which views are to be included in
the current subsystem.

Kill Subsystem--Removes a subsystem. This is the opposite of creating a subsystem.

view commands

Select a View--Selects an existing view. This command can select only the normal
view, which appears on the color monitor or in the left display box on the monochrome
monitor.

Create a New View--Creates a new view file. The actual view must be created with
the graphics editor. When a new view is created, the user must specify the following
information:

* View name
* View physical path

Find-View--Finds and loads a view from the disk.

Save All Modified Views--Saves all views that have been updated.

Save All Views--Saves all views.

Display View States--Displays the current state of all known views, indicating
whether the view is loaded and whether it has been modified since being loaded.

B-7

MODEL CONTROL Status Line Commands

view item commands

Change View Attributes--Changes the attributes for the current view. The following
attributes can be changed:

* View name
" View physical path

Save View--Saves the current view.

Kill View--Removes a view. This is the opposite of loading a view.

Probe View--Updates the icons in the currently displayed views with the values from
the associated state variables in the model.

GRAPHICS EDITOR

The Graphics Editor is used to create and edit views. See Figure I (text).

View Commands

Create--Creates a new view.

Select--Selects an existing view for editing.

Save--Acts according to which mouse button is pushed:

" Save the Current View
* Save All System Views

Attribute--Alters the attributes of the current view.

Kill--Kills the current view. This is the opposite of loading a view.

Probe--Updates the icons in the current view with the values from the associated
state variables in the model.

Flavor--Makes the current view into a flavor.

List--Lists all icons in the current view.

Reorder--Reorders the icons in the current view for drawing and probing.

Taps--Makes a file of all taps in the current view.

Draw--Clears the screen and redraws the current view.

B-8

GRAPHICS EDITOR View Commands

Hardcopy--Acts according to which mouse button is pushed:

* Hardcopy Color Screen--Produces a hardcopy printout of the view displayed on
the color monitor.

" Set up Hardcopy Options--Changes hardcopy output options.

* Preview Hardcopy Image.

Interact--Interacts with the current view. The cursor is moved to the current view
on the color monitor (or the left portion of the monochrome monitor), and the user clicks
the mouse while the cursor is positioned over a graphic icon. If the icon has an output tap
(set tap) into the model, the state variable associated with the icon is changed.

Initialize--Acts according to which mouse button is pushed:

0 Initialize Icon Graphics System
* Initialize System Model Process

Configure--Displays a menu of configurations:

• Normal--Causes normal views to be displayed on the color monitor.

• B&W--Causes normal views to be displayed in the left display box on the
monochrome monitor.

Simenv Commands

Activity--Allows selection of different processes:

* Model Control (Simenv)
* Lesson Editor

Mark Commands

These commands are used to mark one or more icons in the view that is being edited.

Highlight--Highlights the marked icons.

Clear--Clears highlighting of the marked icons.

Mark--Marks one or more icons with the mouse. This command moves the cursor to
the current view on the color monitor to allow the user to mark or unmark specific icons
with the mouse.

All--Marks all icons in the current view.

B-9

GRAPHICS EDITOR Mark Commands

Tapped--Acts according to which mouse button is pushed:

* Mark Tapped Icons--Marks all icons in the current view that have input taps
(probe taps) defined. These icons are updated when the model state variable
change.

" Mark Tap-set Icons--Marks all icons in the current view that have output taps
(set taps) defined. These icons can be modified through interaction with the
view. The interaction causes the associated state variables in the model to be
modified.

Untapped--Marks all icons in the current view that do not have either input or output
taps defined.

Type--Marks all icons of a specified type.

Find--Finds and marks a named icon in the current view.

Misc--Miscellaneous mark commands.

Edit Marked Icon Commands

These commands are used to edit icons that have been marked.

Delete--Deletes all marked icons.

Undelete--Undoes the previous deletion.

Probe--Updates the marked icons in the current view with the values from the
associated state variables in the model.

Default--Acts according to which mouse button is pushed:

* Store Default Parameters--Stores the marked icon's parameters as the default
parameters for icons of that type.

Remove Default Parameters--Removes default parameters for specified icon
types.

List--Lists the names for all marked icons.

Draw--Draws the marked icons.

Describe--Describes the marked icons: produces a listing of all of the parameters
associated with each marked icon.

Inspect--Allows the operator to inspect the marked icons: activates the flavor
examiner to allow inspection of the flavors making up the marked icons.

Move--Repositions the marked icons as a group without changing their size.

B-10

GRAPHICS EDITOR Edit Marked Icon Commands

Copy--Copies the marked icons.

Edit--Edits the shape of the marked icons by adjusting their sides or corners.

Shape--Changes the position and size of the marked icons. Pressing the mouse
changes the shapes of all marked icons, one at a time.

Rotate--Allows marked icons to be rotated. Each marked icon is rotated individually.

Reflect--Reflects the region containing the marked icons about a horizontal or
vertical axis.

Tap--Allows the operator to specify input taps (probe taps) and output taps (set taps)
for an icon.

Name--Allows the operator to specify a name for an icon.

Color--Changes the color of marked icons.

Label--Provides a label for an icon.

Picture--Selects a picture for marked icons. (This command appears to be broken.)

Miscellaneous--Adjusts miscellaneous parameters for an icon.

Inter View--Allows the operator to copy the marked icons into a buffer or the buffer
into the current view.

Grid Commands

These commands are used to draw a grid for positioning icons in a view.

Draw--Draws a grid on the screen.

Show--Toggles the grid between visible and invisible. (This command appears to be
broken.)

Size--Changes the spacing between dots on the grid.

Points--Forces the cursor to move only to grid points when manipulating icons on the
color monitor.

Diagonal--Forces the cursor to move only at 45 degrees from the horizontal when
manipulating icons on the color monitor.

T Square--Forces the cursor to move only in horizontal or vertical directions when
manipulating icons on the color monitor.

B-1l

GRAPHICS EDITOR

Icon Selection

New icons are added to a view by selecting one of the following icon types and
positioning it on the color monitor with the cursor.

Circle Rectangle
Lozenge Triangle
Trapezoid Diamond
Hexagon Octagon
Line Spline
Polygon Text
Banner Graph
Multi Plot Graph Dial
Column Tank
Digital Bar Force Bar
Bar Signal
Flame Pipe
Centrifugal Pump Rotary Pump
Air Ejector Y Strainer
Duplex Strainer Impulse Trap
Orifice Sstg
Ssdg Circuit Breaker
Fusible Link Fuse
Biscuit Bar Switch
Knife Switch Rotary Switch
Toggle Switch Stop Valve
Anglestop Valve Check Valve
Relief Valve Safety Valve
Regulator Valve 3 Way Valve
4 Way Valve

Status Line Commands

All of the status line commands available under model control are also available
under the graphics editor.

B-12

LESSON EDITOR

The lesson editor (Figure B-2) is used to create and edit lessons. A lesson is a
sequence of instructions and text that is used to explain the operation of the simulation.

Lesson Commands

Select--Selects an existing lesson.

Find--Finds and loads a lesson from disk.

Create--Creates a new lesson.

Save--Saves the current lesson.

Kill--Kills the current lesson. This is the opposite of loading a lesson.

Attribute--Edits the attributes for the current lesson.

Play--Plays back the current lesson. This executes the sequence of instructions
(segments) that are defined for the current lesson.

Help ?--An unimplemented feature that could be used to display help information.

View Commands

Select--Acts according to which mouse button is pushed:

* Select a View--Selects a defined view and displays it either on the color monitor
or in the display box on the monochrome monitor.

0 Selects a Control View--Selects a defined view and displays it in the display box
on the monochrome monitor. For the display to appear, the monochrome
monitor must be configured for Control Normal display.

Initialize--Acts according to which mouse button is pushed:

* Initialize Icon Graphics System.

* Initialize System Model Process.

Configure--Displays a menu of configurations:

* Normal--Causes normal views to be displayed on the color monitor. Control
views are not displayed.

" Control Normal--Causes normal views to be displayed on the color monitor.
Control views can be displayed in the display box on the monochrome monitor.

* B&W--Causes normal views to be displayed in the display box on the monochrome
monitor. Control views are not displayed.

B-13

pigl

0

C

4.4-.. ,j

0.0

E0

B-14

LESSON EDITOR

Simenv Commands

Activity--Allows selection of different processes:

* Model Control
* Graphics Editor

Segment Commands

The segment commands are used to add new segments to the lesson. Each segment is
a specific instruction that performs an operation. The segment commands are also used
to perform view operations. The window that contains the segment commands is small,
and all commands cannot appear in the window simultaneously. To see all of the
commands, the cursor must be moved to the left edge of the window to scroll the
commands.

Reset--Acts according to which mouse button is pushed:

0 Add a Reset Model Segment to the Lesson--This type of segment causes the
model to be reset.

0 Reset the Model.

Run--Acts according to which mouse button is pushed:

1. Add a Run Segment to the Lesson--This type of segment runs the model when
executed.

2. Run the Model.

Stop--Acts according to which mouse button is pushed:

* Add a Stop Segment to the Lesson--This type of segment stops the model
when executed.

0 Stop the Model.

Rate--Acts according to which mouse button is pushed:

* Add a Set Model Rate Segment to the Lesson--This type of segment causes
the tick rate for the model to change.

* Set the Model Rate.

Tick--Acts according to which mouse button is pushed:

* Add a Tick Segment to the Lesson--This type of segment runs the model for
one tick.

B-15

LESSON EDITOR Segment Commands

3. Run the Model for 1 Tick.

Status--Acts according to which mouse button is pushed:

* Add a Status Segment to the Lesson--This type of segment displays the
current model status on the monochrome monitor.

0 Show the Model Status.

View--Acts according to which mouse button is pushed:

* Add a Normal View Segment to the Lesson--This type of segment selects a
new view to be displayed as the normal view. (This command causes a
system error when executed.)

* Add a Control View Segment to the Lesson--This type of segment selects a
new view to be displayed as the control view. (This command causes a
system error when executed.)

4. Select a New View--Selects a new normal view.

Text--Adds a text segment to the lesson. This type of segment causes text to be
displayed on the monochrome monitor when executed.

Pause--Adds a pause segment to the lesson. This type of segment causes the
lesson to pause for a specified number of seconds (default is 5 seconds).

Mouse Pause--Adds a mouse pause segment to the lesson. This type of segment
causes the lesson to pause until the operator clicks a mouse button within a displayed
window.

Icon--Adds an icon behavior segment to the lesson. This type of segment
changes the state of an icon that has an output tap defined in the normal view or the
control view.

Icon Condition--Adds an icon conditional segment to the lesson. (Execution of
this command causes a system trap to occur. Its intended operation is unknown.)

Highlight Region--Adds a highlight region segment to the lesson. This type of
segment causes a region or regions on the screen to be highlighted. The remainder of
the screen is masked in gray. Highlighting can be shown only on the color tnonitor.

Highlight Icons--Adds a highlight icon segment to the lesson. This type of
segment causes specific icons to be highlighted. The remainder of the screen is
masked in gray. (This command did not work, as no action occurred when it was
selected.)

Clear Highlight--Adds a clear highlight segment to the lesson. This type of
segment clears any highlighting on the screen.

Function--Adds a function segment to the lesson. This type of segment executes
a LISP function. (it is not know if this command works.)

B- 16 A

LESSON EDITOR

Edit Commands

The edit commands are used to edit segments that have been created using the
segment commands. This is done by highlighting the segment to be edited and then
selecting the appropriate edit command.

Perform--Executes the highlighted segment(s) once.

Delete--Deletes the highlighted segment(s).

Undelete--Undeletes previously deleted segments. Segments can be moved by
deleting them and then undeleting them in a different location in the lesson sequence.

Copy--Copies the highlighted segment(s). (Nothing happens when this command is
selected.)

Edit--Edits parameters for the highlighted segment(s). For example, the number of
seconds for a pause segment can be changed. Not all segments have parameters that can
be edited.

Name--Changes the description for a lesson segment.

Status Line Commands

All of the status line commands available under model control are also available
under the lesson editor.

Lesson Status Commands

A second status line is shown that gives lesson status. Commands can be chosen by
positioning the cursor over one of the selections on the status line and clicking one of the
mouse buttons. The status line selections consist of "Lesson" and the currently selected
lesson.

lesson commands

Select a Lesson--Selects an existing lesson.

Create a New Lesson--Creates a new lesson.

Find Lesson--Finds and loads a lesson from the disk.

Save All Lessons--Saves all current lessons onto the disk.

Display Lesson States--Displays the current state of all known lessons, indicating
whether the lesson is loaded and whether it has been modified since being loaded.

B-17

LESSON EDITOR Lesson Status Commands

lesson item commands

Change Lesson Attributes--Changes the attributes for the current lesson.

Save Lesson--Saves the current lesson.

Kill Lesson--Removes the current lesson. This is the opposite of loading a lesson.

OPERATING SYSTEM COMMANDS

Each of the Steamer prototype screens provides the operator with a window in which
to enter the operating system commands for the Symbolics machine. Since these
commands are fully described in the Symbolics documentation, they are not discussed
here.

B_-18

APPENDIX C

STEAMER PROTOTYPE GLOSSARY

C-0

Attributes

Attributes are operating parameters that are defined for each system, subsystem,
model, view, and lesson. These attributes consist of (1) a name for the system,
subsystem, model, view, or lesson and (2) a location on the disk where the data base
for that item is stored. Depending on the item, attributes may also include other
definable parameters.

Black-and-White (or monochrome) Monitor

The black-and-white monitor is one of two monitors used for Steamer. Commands
that are selected with the mouse and views are presented to the user on the monitor.

Casualty

Casualties are model malfunctions that are initiated by the user. For example, the
user can initiate a casualty that would force a pump to fail. The rest of the model
reacts to the casualty and the user observes the result. !By watching subsequent
system indicators such as tank levels and dial readings, the user gains an understand-
ing of the problems created by the casualty.

Color Monitor

The color monitor is one of two monitors used for Steamer. It is used to display
views.

Control View

Steamer can display two views simultaneously. The control view is the secondary
view and is displayed on the monochrome monitor. The primary view is displayed on
the color monitor. Any Steamer view can be placed in the control view.

Display Box

The display box is a window on the monochrome monitor that displays views.

Flavor

A flavor is part of Symbolics' object-oriented extension to the ZetaLisp programmng
language. Flavors represent objects within the language.

Flavor Examiner

The flavor examiner is a Symbolics utility that is used to examine flavors that have
been created.

C-I

Graphics Editor

The graphics editor is the portion of Simenv that is used to create and modify views,
Using the graphics editor, the user builds a view by selecting and positioning icons
within the view. The icons can be tapped into the model using input taps and output
taps.

Grid

The grid is a tool for positioning icons when using the graphics editor. It consists of a
series of dots that are spaced at regular intervals on the color monitor. When
creating views, the user can use the grid points to line up icons or use positioning
commands that will force lines to terminate on grid points.

Highlighting

Highlighting is a method for enhancing part of a graphic view so that it stands out
from the rest of the view. For Simenv, this is done by placing a gray mask over the
portion of the view not being highlighted, making the unmasked portion of the view
stand out. Highlighting can be done only on the color monitor.

Icon

An icon is a graphic symbol that can be placed in a view. Simple icons are used to
create shapes such as rectangles, circles, and lines. More complex icons depict steam
plant components such as valves, pipes, pumps, and flames. Icons are also available
for creating graphs and text. Icons placed in a view can be connected to state
variables in the model using taps. As the value of a tapped state variable changes,
the icon changes to show the new value graphically.

Input Tap

This tap connects an icon and a state variable. If the state variable changes, the icon
is updated to show the change graphically. An input tap is also called a probe tap.

Interaction

Interaction is the process of changing the values of icons within a view. A user
interacts with a view by selecting the interact command. The cursor is moved to the
normal view, and the operator positions the cursor over an icon in the view and clicks
the left mouse button. If an output tap is defined for the icon, the value of the icon
is changed and the value of model state variable that is defined for the output tap is
updated. The user clicks the middle mouse button to terminate interaction'.

Kill

The kill command removes an item so that Simenv is no longer aware of it. Killing an
item does not delete it from the disk, it simply removes it from the list of items that
Simenv can address. The item can later be reloaded from disk using the load
command.

C-2

Lesson

A lesson is a series of segments (instructions) that manipulate the simulation to
illustrate a concept or a series of actions. Each segment within the lesson causes a
change to the model or to a view. Text can be added to explain the change that is
made and to describe the results that the change will cause in the simulation. When a
lesson is run, Simenv sequences through the segments in order, creating a "story" that
describes the operation of the device being simulated.

Lesson Editor

The lesson editor is used to create and modify lessons. See Lesson.

Load

The load command retrieves part of the system data base from disk so that Simenv
can address it. Loading an item does not automatically select it.

Malops

Malops is an abbreviation for malfunctioning operation. Whenever the value of any
state variable in the model is outside its normal operating range, a malops is signaled.

Model

A model is an algorithm that mathematically simulates the operations of a physical
device. The model maintains a set of state variables. The state variables correspond
to components within the actual physical device,and their values reflect possible
values of the device components (for example: on/off, 200 psi, etc.). When the
model is operating, it updates the state variables to reflect actual operation of the
physical device.

Each model must have defined routines that Simenv can access to reset the model to
an initial condition, run the model, and get the status of the model.

Model Control

Model control is the portion of Simenv that creates and controls a simulation. Model
control is sued to create and modify systems, models, and subsystems. It is also used
to run the model, reset the model, and change model parameters. Model control
commands are used to select views for display and to interact with the views.

Output Tap

An output tap connects an icon and a state variable so that, when the icon is changed
(through user interaction), the value of state variable is updated. An output tap is
also called a set tap.

Primary View

The primary view is one of the two views that Simenv can display simultaneously.
The primary view is displayed on the color monitor. Any Steamer view can be placed
in the primary view.

C-3

Probe

The probe command is used to update the icons in the current view that have input
taps defined. A probe causes the icons to reflect the values of the associated model
state variables.

Probe Tap

See Input Tap.

Rate

The rate determines the relationship between time real and model operating time.
For a rate of 1, the model operates at real time. For a rate of 0.1, it operates 10
times faster than real time.

Segment

A segment is a single instruction within a lesson. It manipulates the simulation.
Segments are provided to start and stop the model, display different views, modify
the state of view icons, and present text that describes the changes that are taking
place.

Set Tap

See Output Tap.

Simenv

Simenv is short for simulation environment. Simenv is the program that creates and
manipulates simulations. Using Simenv, a user creates the models and views that
simulate a physical device. Once the simulation is created, Simenv is used to operate
the simulation and look at views of the simulation. Simenv is composed of a model
control facility and a graphics editor.

State Variable

A state variable is a variable within the model that represents a component in the
physical device. The values of the state variable correspond to values of the actual
device component. For example, a state variable that represents a switch has the
possible values of on and off. A state variable that represents a steam pressure
might have a value of 200 psi.

Steamer System

Steamer system is the collection of code (the model) and graphic pictures (views) that
simulates operation of the 1200-psi steam plant.

Subsystem

A subsystem is a collection of views for a system. Once a number of views have been
created, they can be grouped into various subsystems based on the user's criteria.

C-4

LI

System

A system is a simulation that was built using the simulation environment (Simenv).
For example, the simulation of the 1200-psi steam plant is a system called Steamer
system. Each system is composed of one or more models, one or more subsystems,
and one or more views.

Tap

A tap is the connection between a view icon and a model state variable. Two types
of taps are provided. An input tap (or probe tap) that connects an icon and a state
variable so that, if the value of the state variable changes, the icon is updated
graphically to show the change. An output tap (or set tap) connects an icon and a
state variable so that, if the icon changes (through user interaction), the value of the
state variable is updated. Each icon can have both an input tap and an output tap.

Tick

A tick is one execution of the simulation model. If the model is run for one tick, all
of the model routines are executed once and the state variables are updated once.

Untapped icons

Untapped icons are icons that have no defined input or output taps.

View

A view is a graphical representation of a portion of a simulated device. Each view is
composed of graphical icons that correspond to actual components in the simulated
device. The icons are arranged in the view to show connection between the device
components. A view can be displayed on either the color or monochrome monitor.

C-5

DISTRIBUTION LIST

Chief of Naval Operations (OP-I 1 1), (OP-01B2)
Chief of Naval Technical Training
Surface Warfare Officers School Pacific, Coronado
Surface Warfare Officers School Command, Newport
Officer in Charge, Engineering Sytems Schools, Service Schools Command, Naval Training

Center, Great Lakes
Office of Naval Technology (Code 222)
Office of Naval Research (OCNR-I 142CS)
Commander Naval Reserve Force
Commanding Officer, Naval Education and Training Program Management Support

Activity (Code 03) (2)
Naval Training Systems Center
Army Research Institute (PERI-POT-I)
Air Force Human Resources Laboratory (IDI)
Defense Technical Information Center (DTIC)

